Phase engineering of two-dimensional transition metal dichalcogenides
نویسندگان
چکیده
منابع مشابه
Phase engineering of transition metal dichalcogenides.
Transition metal dichalcogenides (TMDs) represent a family of materials with versatile electronic, optical, and chemical properties. Most TMD bulk crystals are van der Waals solids with strong bonding within the plane but weak interlayer bonding. The individual layers can be readily isolated. Single layer TMDs possess intriguing properties that are ideal for both fundamental and technologically...
متن کاملCovalent functionalization of monolayered transition metal dichalcogenides by phase engineering.
Chemical functionalization of low-dimensional materials such as nanotubes, nanowires and graphene leads to profound changes in their properties and is essential for solubilizing them in common solvents. Covalent attachment of functional groups is generally achieved at defect sites, which facilitate electron transfer. Here, we describe a simple and general method for covalent functionalization o...
متن کاملPhysical and chemical tuning of two-dimensional transition metal dichalcogenides.
The development of two-dimensional (2D) materials has been experiencing a renaissance since the adventure of graphene. Layered transition metal dichalcogenides (TMDs) are now playing increasingly important roles in both fundamental studies and technological applications due to their wide range of material properties from semiconductors, metals to superconductors. However, a material with fixed ...
متن کاملElectronics and optoelectronics of two-dimensional transition metal dichalcogenides.
The remarkable properties of graphene have renewed interest in inorganic, two-dimensional materials with unique electronic and optical attributes. Transition metal dichalcogenides (TMDCs) are layered materials with strong in-plane bonding and weak out-of-plane interactions enabling exfoliation into two-dimensional layers of single unit cell thickness. Although TMDCs have been studied for decade...
متن کاملPhotocarrier relaxation pathway in two-dimensional semiconducting transition metal dichalcogenides.
Two-dimensional crystals of semiconducting transition metal dichalcogenides absorb a large fraction of incident photons in the visible frequencies despite being atomically thin. It has been suggested that the strong absorption is due to the parallel band or 'band nesting' effect and corresponding divergence in the joint density of states. Here, we use photoluminescence excitation spectroscopy t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Science China Materials
سال: 2019
ISSN: 2095-8226,2199-4501
DOI: 10.1007/s40843-018-9398-1